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This paper discusses the uniform cylindrical waveguide formed by placing
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cross section, the numerical technique-of the point-matching method is adopted
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1. INTRODUCTION

A two-conductor waveguide in which one conductor encloses the other
and each has an arbitrary cross section presents an interesting problem for the
application of the point-matching technique. A special case of this guide is
when each of the two conductors has a circular cross section; such a circular
eccentric guide has been used as an adjustable quarter-wave transformer for
TEM wave modes of propagation. 1 The characteristic impedance of this frans-
mission line decreases as the eccenfricfty between the inner and the outer con-
ducfors increases. When operating at relatively high frequencies, however, it
should be taken into account that high order modes may be excited.

Recently, the point-matching technique has been utilized to solve
eigenvalue problems in many areas of engineering science.z-s The boundary
conditions of a two-dimensional problem are imposed at a finite number of points
around the periphery. Under this assumption, the partial differential equation of
the problem can be reduced to a system of algebraic equations. This method is
convenient especially when a high speed digital computer is available. In this
paper, the cutoff frequencies of circular eccentric waveguides will be calculated
by the point-matching method for the lowest and the nexi higher order TE and TM
wave modes, and the results are plotted for several geometrical configurations.

it is observed that each of the degenerate wave modes (with angular-varying
field distribution) in the circular coaxial waveguides are split into two modes when
the guide becomes eccentric, namely: the even and the odd modes. The even mode
is assigned to the mode for which the longitudinal field component is symmetric with
respect to the line of eccentricity, while the odd mode is assigned to the mode for
which the longitudinal component is anti-symmetric with respect to the line of
eccentricity. Each of the modes with no angular-varying field in the coaxial

waveguides has only even modes in eccentric waveguides.

t The line of eccentricity is defined as the line joining the centers of the
two conductors.




Cutoff frequencies of both the lowest order even and odd TM wave modes are
decreasing with increasing eccentricity. The cutoff frequency of the lowest
order even TE mode is increasing with increasing eccentricity. There is,
however, very little change in cutoff frequency of the lowest order odd TE
mode if the ratio of the radii of the outer and inner conductors is equal to
three or larger.

The objective of this paper is twofold: 1) to obtain dato of several
circular eccentric waveguides of different geometrical configurations, 2) to
show that the eigenvalue problem of this type of two-conductor waveguide ,
in which each conductor is arbitrary in cross-sectional shape, can be solved
by the point-matching method.

The measured data for two circular eccentric guides verify the theoretical

valuves.

2. THEORETICAL FORMULATION

Consider a two-conductor waveguide in which one conductor encloses
the other. Let the guide be oriented such that the z-axis is enclosed by the
inner conductor, and the cross section of the guide be symmetrical with respect
to the x-axis as shown in Fig. 1(a). Let a time-harmonic [exp (jwt) ] electro-
magnetic wave propagate between the two conductors in the positive z-direction.
The solutions of the scalar Helmholtz equation, for the even and odd modes may

» . L) 6
be written in terms of coaxial wave modes as follows:

*e = :E_.o [Aen Jn(kr) + Ben Yn(kr) ] cos nb (1)
*o = n)3=] [Aon Jn(kr) + Bon Yn(kr) Jsinnb (2)

where the subscripts e and o stand for even and odd respectively, n isan

integer, and r and 6 are the polar coordinates. J and Yn are the nth




order Bessel functions of the first and secoﬁd kinds respectively. The quantities
Al and B are constonts to be detemined by the boundary conditions. The
cutoff wave number k, is given by

k2 = wzuoeo - kz
where M and €, are the constitutive parameters of free space, w is the
operating angular frequency, and kz =2n/ )\g , is the propagation constant.
The wave function ¥ = Hz for TE wave modes, and ¥ = Ez for TM wave modes.
The wave function ¥ must satisfy either Dirichlet or Neumann boundary conditions.
With the known longitudinal field components H_ or E, the transverse field

components can be computed by:
E, =Gk /KA -, E +(wm /k ) Zx (%, H)] @3)
A= (- ik, /) Lwe /k )T x (%, E )+ 9, H_] (4)

where z is the unit vector in the z-direction, and A is the transverse
gradient operator. The cutoff wave number k and the expansion coefficients
An and Bn for each wave mode are found by requiring that the wave function ¥
satisfies the boundary conditions. Thus, by means of (1) - (4) the field inside
the waveguide is completely described, and the power transfer, the attenuation
constant due to the finite conductivity of the walls, and other information about
the guide can be determined by numerical techniques.

~ Assuming that the series in (1) and (2) converge rapidly and uniformly
for the cases under consideration, the wave functions may be approximated by

a finite number of terms, i.e.

N-1

We = T [Aen Jn(kr) + Ben Yn(kr)] cos n@ (5)
n=o
N -

’lfo = n'z:!_] [Aon Jn(kr) + Bon Yn(kr)] sin nB (6)




The point-matching technique requires (5) or (6) to satisfy the boundary
conditions at a finite number of points, namely, 2N points. Let the points
(r.| , 9‘), (r, , 92), ceen (rN ’ GN) be a set of chosen points around the outer
cross-sectional contour, and (rN L SN + ]), (fN Y GN + 2), cees
(r2N ' 92N) be the corresponding set of chosen points around the inner cross-

sectional contour. The boundary conditions at these points for TM modes require

cos _
LA J ke )+B Y (ke )] " nb =0 7)
and for TE modes require

—_— COS
n.v % [An J (krm) +B Yn ('krm)]sin n9m =0 (8)

where m=1, 2, 3, ... 2N, and n is the unif vecior nomal to the surface.
The limits of the summations are the same as those of (5) and (6). The constants
An and Bn with neither one of the subscripts (e , o) implies either even or odd.
Also, the upper and lower functions in (7) and (8) will always designate the even
and odd wave modes respectively. Ina more precise form, (8) may be written as

) . ; ~cos
Zlr [A J (ke )+B Y (ke )]: " né

m° sin m

sin (80)
nb
cos m

*tona_ [An J (kr )+ B Yn(krm)] 1=0

where cos a =n . Fm for m=1, 2, ..., N; cos a = -n - Fm for
m=N4+1, N+2, ..., 2N; and Fm is the unit vector in the r-direction at
point (rm ’ Gm) as shown in Fig. 1(b). The above formulations ensure the wave
functions satisfying the boundary conditions simultaneously at the chosen points
on the outer and the inner cross—sectional contours. Each of (7) and (8a) forms a
system of 2N homogeneous algebraic equations of 2N expansion coefficients
An and B with the cutoff wave number k as the parameter. To obtain non-
trivial solutions of An and Bn , the determinant of these coefficients must be

zero. That is,



o s et b o i B

D(k) =det Iy 1= 0 )

where
cos .o
=) o i (50)
s .

dii =Y (kr):::' G-N)e (%)
for TM modes; and
dii=kr| in |9 J' (kr)+ i tan O,i sin |9i Ji (kri) (9<)
djo=kr o (a-N)eiY; (kr)+(| N) tan a. " i-N) .Y, ke (9d)
for TE modes;

where for (%a) and (9¢)

and for (9b) and (9d)
i—{N,N+]' o-.’zN-"
TN+, N+2, ..., 2N

and i=1,2, ..., 2N.

Equation (9) will be referred to as the point-matching characteristic equation.
The roots of (9) are the values of k which are infinite in number, each of
which corresponds to a wave mode. Having detemined the cutoff wave number
for a specific mode, the expansion coefficients An and Bn can readily be
found from (7) and (8a).

It should be noted that the chosen points around the inner cross-sectional
contour (inner points) depend on the outer points and vice versa. The dependence
is that for a polar coordinate Bm of an outer point, there is an inner point which
has the same polar coordinate.  That is, Om = GN tm where m=1, 2, ..., N.
Under this condition, (9) yields exact solutions when applied to the circular

coaxial guide.



3. ONE CONDUCTOR WITH CIRCULAR CROSS SECTION

If one of the cross-sectional contours is circular, not only is the previous
analysis applicable, but also (9) can be reduced from a determinant of order 2N
to a determinant of order N, with the saome accuracy or better. Due to the
limited capacity of a digital computer, the evaluation of the smaller determinant
is easier and more economical.

Let the z-axis be ccollinear with the axis of the circu
radius a. The boundary conditions can be satisfied exactly at the boundary of
r=a by setting Ez =0 and EG =0 for TM and TE modes respectively. The
boundary conditions on the other conductor with general cross section,
where r depends on 8, are imposed point-wise.

Consider the TM modes first, the wave functions (5) and (6) are still valid
for this waveguide. The boundary conditions at r=a require that

B,=-A_J (ka)/Y (ka) (10)

Substituting (10) into (5) and (6), and matching the boundary conditions at finite

number of points only at the general cross-sectional contour yield

i L ke )Y (ka) -J (ka) ¥ _ (kr )] (fl‘;‘ n8 )/Y (ka)}A =0 an
where (r] , 9‘) , (r2 ; 62), ceer (rN , GN) are N points properly chosen
around the general contour. The limits of the summation are between 0 and
(N - 1) for the even modes and between 1 and N for the odd modes.

Since the factor 1/ Yn(ko) is the same for every column of the matrix
inside the braces of (11), the determinant of this matrix being equal to zero is

equivalent to setting

D(k) = det |dmn |=0 (12)



B o cos
where dmn = Un(krm) Yn(kc!) Jn(kd) Yn (krm)] <in nem

and 1/Y_ (ko) = 0 | (13)

Observe that the order of the determinant of the point-matching charac-
teristic equation is N. Evidently, it is easier to evaluate (12) than the equations
in (9). The root of (13) is k=0 which is the solution of the TEM mode

For the TE wave modes, the equation corresponding to (10) is given by

Bn= -An J;‘ (ka)/Y:_‘ (ka) (14)

Substituting (14) into (5) and (6) and again using the point-matching method on

the general cross-sectional contour yields

Z AL, ) ¥, (ko) = 3, ko) Y, er, )T kr (500 )/Y, (o)
N (15)
¥ tana [ (ke )Y (ka) = 3! (ka) Y (kr )] n(::; ng )/Y' (ka)JA =0

where m=1,2,3, ... N
The limits of the summation are the same as for TM modes. Equation (15)
is similar in form to (11), and by the same reasoning, the matrix inside the braces

of (15) leads to the form of (12) with
1 ' -n 1 cos
dmn = [Jn (krm) Yn (ka) Iy (ka) Yn (krm)] krm sin nem

¥rana [ (ke )Y (ka) = 3! (ko) Y_(kr )] n sin no_

COs

and 1/Y! (ka) = 0

Again k =0 is the solution for the TEM mode.



With the cutoff wave number determined, the expansion coefficients
An ond B can be computed by (10}, (11), (14), and {15). It is ecsy to see
that (11) and (15) are reducable to exact solutions when applied to circular

coaxial waveguides.

4. COMPARISON OF EXPERIMENTAL AND THEORETICAL RESULTS

To verify the correciness of the previous formulations, two circular eccentric
waveguides were investigated experimentally. One of the eccentric waveguides
[see Fig. 2] under consideration is made of two circular copper tubes with radii
a=0.475cm. and b=1cm , the distance between the two axes L = 0.315 cm.
(Let this be designated as number 1 waveguide.) The dimensions of the other
waveguide (number 2) are a=0.15875cm, b=1cm, and L =0.379 cm. The
cutoff frequencies are measured by the resonant-frequency method7, by which the
guide is shorted on both ends, thus, forming a resonant cavity. The waveguide
cavities of these two examples are 15.48 cm in length. The energy was fed
through a rectangular slit.

From the field distributions [see Fig. 3], if the slit is placed radially
outward at the largest dimension of the guide as shown in Fig. 4(a), the energy

fed into the guide induces the odd TE” (denoted by OTE If the slit is

).
i1
displaced by an angle of 90° from the position of the guide's largest dimension as
in Fig. 4(b), the even TE” (ETE] ])

numbers ka, are tabulated in Tables | and |l for the No. 1 and the No. 2 guides,

is induced. The normalized cutoff wave

respectively. The measured data show in most cases better than two-place accuracy.
The error is partly due to the physical construction of the eccentric guides,
otherwise, the accuracy is expected to be better. This can be seen when L =0
(coaxial guide) in No. 1, for which the theoretical cutoff frequency is
6.5513 Gc while the experimental value is 6.5505 Ge.

The two waveguide cavities were also examined at frequencies from 4 Ge
up to cutoff (6.546 Ge and 7.237 Gc for OTE” modes for No. 1 and No. 2 guides

respectively), and no resonance was observed.



The theoretical values in Table | and Table Il are computed by (12) with
the z-axis being coliinear with the axis of the waveguide's inner circuiar tube.
Eleven points were chosen on the outer cross-sectional contour and were appro-
ximately evenly distributed. The calculated values are believed to have three-
placé accuracy since, for example, the values of ka, 0.65263 and 0.65269 of
the O'l'En mode for the No. 1 guide are calculated by eleven points and fifteen
points respectively. More evidence will appear later concerning the accuracy of

the computation.

Table 1 - Comparisons of cutoff wave numbers,
ka, of No. 1 waveguide.

C)TEl i ETE] i
Measured 0.6512 0.7205
Calculated 0.6526 0.7200

Table Il ~ Comparisons of cutoff wave numbers,
ka, of No. 2 waveguide.

OTE] ! ETE] 1
Measured 0.2779 0.2840
Calculated 0.279 0.2849

5. CUTOFF FREQUENCIES OF ECCENTRIC WAVEGUIDES

As shown in the last sections, the experimental data of eccentric waveguides
substantiate that the point-matching characteristic equation (12) is applicable for
calculating the cutoff frequencies of TE wave modes. The validity of (12) for TM

wave modes will be demonstrated in Section 6,
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In Fig. 5 through Fig. 10, the nonﬁalized cutoff wave numbers ko of
eccentric waveguides are plotted vs, the normalized eccentricity L/a with the
radius ratio b/a considered as the parameter. For the TE modes, the radius
ratios of 1.5, 2.0, 3.0 and 4.0 are shown, while for the TM modes the ratios of
2.0 and 4.0 only are shown. The eccentricity varies from the minimum value of
zero to the maximum valve.

- The behavior of the cutoff frequencies with varying eccentricity is
irregular for all higher order modes. However, the cutoff frequency decreases
with increasing of eccentricity for both lowest order odd and even TM modes,

i.e. the OTM” and the ETM‘O. This phenomenon is reversed for the ETEH mode.
The eccentricity however, has little effect on the cutoff characteristics of the
OTE” mode except when the two conductors are aimost touching. In this case,
the cutoff frequency becomes lower than that of the coaxial guide. The pairs
OTEmn and ETEmn , and OTMpq and ETMpq of the eccentric guides are split

from the degenerate TEmn and TMpq mode§ of the coaxial waveguide with the
same radius ratio, respectively. However, the TEmo and TMmo modes of the
coaxial guides correspond only to the even modes in the eccentric guides.

The plots in Fig. 5 through 10 are based on the calculated values of
(12) with three-place accuracy or better. The cutoff wave numbers of OTE”
mode for b/a = 1.5 are computed by (12) using 11, 13, 15 and 18 points on
the boundary and the results are shown in Table lli. Those for ETE” mode of
the same guide computed by 11 and 18 points are shown in Table IV. The chosen

points on the outer contour are approximately evenly distributed.

1



Table 11l - Comparison. of cutoff wave numbers ka of OTE. . mode with
b/a = 1.5, calculated by 11, 13, 15 and 18 points.

';‘;’;om T o 0.2 0.3 0.4 0.45
n 0.80415 0.80102 0.79446 0.77616 |  =—==mmm-
13 0.80415 0.80102 0.79450 0.78068 0.76631
15 0.80415 0.80102 | 0.79450 0.78067 |  0.76581
18 0.80415 0.80102 0.79450 0.78069 0.76634

Table 1V - Comparison of cutoff wave number ka of ETE ! mode with
b/a = 1.5, calculated by 11 and 18 points.

|
| L/al 0.1 0.2 0.3 0.4 0.5

of Poin
11 0.81224 0.83544 0.88145" 0.96824 1.1459
18 0.81224 0.83545 | 0.88147 0.96906 1.1459

For TM wave modes, the differences between the values calculated by 11 and
18 points are at most in the fifth place. It is observed that the convergence of the

series solution is more rapid if the ratio of radii b/a and the eccentricity L/a are

smaller.

} 6. DISCUSSION

The point-matching technique is a convenient method for computing the
cutoff wave numbers of eccentric waveguides. The point~matching characteristic
| equation (12) was verified experimentally for TE wave modes. The validity of (12)

for TM wave modes can be verified from the boundary conditions point of view.

‘ 12




Substituting the particular wave number of TM mode under consideration
[calculated by (12) Jinto (11), the expansion coefficients An can then

be determined algebraically. Rewriting (11) with e replacing L yields,

£ 0 k)Y, (ka) - 3 ko) Y, (keI ne 1A Y ka)]=0

n
where ka and An are known constants. Fo function of 8, describes
the curve where the boundary conditions [i.e. t(rc ; 0) = 0] is satisfied
beside at r=a imposed previously [see (10)]. It can be seen that the
function r given by (16), represents a single-valued closed contour.
From (5), (6) and (10) through (12) obviously r. passes the chosen points
on the general cross-sectional contour. |f the intervals between the chosen
points are made sufficiently small, (smaller than the cutoff wavelength) the
deviation between the actual cross-sectional contour and that described by
(16) is expected to be small. The cutoff wave numbers of TM wave modes
calculated by (12) will give as good an accuracy as desired.

From the previous analysis, it is seen that (12) is obtained by matching
the boundary conditions exactly at the circular cross—sectional contour and
approximately at the general cross-sectional contour. The limitation of using
(12) on the general contour are the same as those discussed in Reference (5).
Numerical computations show that (12) fails to determine the cutoff frequencies
of TE modes for cross-sections with re~entrant corners.

To verify the formulation of Section 2, the cutoff wave numbers ka of
ETE” modes for circular eccentric waveguides are calculated by (9) and
compared with those obtained by (12) as shown in Table V. The calculations
are using the same set of chosen points as discussed in Section 2. Observe that
(9) is valid but the accuracy is not as good as that obtained by using (12)
especially when the eccentricity is large.

13
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Table V - Comparison of ka of ETE” calculated by (9) and (12).

L/a b/a=1.5 b/a=3
Eq. 0.1 0.2 0.3 0.4 0.8
9 0.81222 0.83140 0.86601 0.51833 0.53204
(12) 0.81224 0.83544 0.88145 0.51827 0.53304

In the analysis in Sections 2 and 3 are formulas for the computation of

waveguides with cross sections more complex than that of the eccentric guides.

Cutoff frequencies computed in Sections 4 and 5 serve as an example of the

applications of the point-matching technique. With the expansion coefficients

found as outlined, the attenuation constant due to the finite conductivity of the

conductors may be esﬁmm'ed.8
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FIGURE CAPTIONS

The geometry of the two-conductor waveguide under

consideration.

The angle o at the chosen points.

The cross section of the eccentric waveguide.

The field configuration of the ETE., mode.

R

The field configuration of the OTE,, mode.

11
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Fig. 1 (o) The geometry of the two-conductor waveguide under consideration.

(b) The angle o at the chosen points.




Fig. 2 The cross section of the eccentric waveguide.



Fig. 3 (a) The field configuration of the ETE” mode.

(b) The field configuration of the OTE” mode.




()

Fig. 4 (a) The coupling hole for exciting OTE” mode.

(b) The coupling hole for exciting ETE” mode .

The arrows indicate the electric field of the excitation.
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Fig. 5 Cutoff wave numbers of eccentric guide with b/a=1.5

for TE modes.



Fig. 6 Cutoff wave numbers of eccentric guide with b/a™= 2.0 Tor TE modes,
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Fig. 7 Cutoff wave numbers of eccentric guide with b/a = 3.0 for TE modes.
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Fig. 8 Cutoff wave numbers of eccentric guide with b/a =4 for TE modes.
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Fig. 9 Cutoff wave numbers of eccentric guide with b/a = 2.0 for TM modes.
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Fig. 10 Cutoff wave numbers of eccentric guide with b/a =4 for TM modes.




